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LETTER TO THE EDITOR

On the zeros of the Husimi distribution

H J Korsch, C M̈uller and H Wiescher
Fachbereich Physik, Universität Kaiserslautern, D-67653 Kaiserslautern, Germany

Received 9 July 1997

Abstract. The basic features of the zeros of the Husimi phase-space density of a quantum
eigenstate are discussed. It is demonstrated that some special properties of the harmonic oscillator
related to the number of zeros and their location within the classical energy shell are not valid
for anharmonic potentials, as illustrated by numerical examples for the Morse oscillator. Also
discussed is the distribution of zeros in quantum Poincaré sections for systems with two degrees
of freedom.

Quantum phase-space distributions are of increasing interest in studies of quantum chaos
because they allow a direct comparison between classical and quantum dynamics (see, e.g.,
[1–3] and references therein). Of particular recent interest are the zeros of the Husimi
distribution, which are organized, for example, on smooth curves or space filling for
classically regular or chaotic dynamics, respectively [4–12].

In the present letter we discuss some properties of the Husimi phase-space distribution
of a quantum state in order to clarify some frequent misconceptions. The Husimi density

%(s)(p, q) =
∣∣∣∣ ∫ φ(s)∗p,q (q

′)ψ(q ′) dq ′
∣∣∣∣2 (1)

(normalization
∫
%(s)(p, q)dp dq/2πh̄ = 1) is given by the projection of the wavefunction

ψ onto coherent states

φ(s)p,q(q
′) = 〈q ′|p, q; (s)〉 = 4

√
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πh̄
exp

[−s(q ′ − q)2
2h̄
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p
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(
q ′ − q

2

)]
(2)

localized in phase space(p, q) with a minimum product of the uncertainties1p = √h̄s/2,
1q = √h̄/2s. The squeezing-parameters = 1p/1q can be adapted to the problem under
investigation.

Expressed in terms of wavelet theory, the wavefunctionψ is analysed by means of
the wavepackets (2), i.e. by a windowed Fourier transformation, where the size of the
Gaussian window,s, can be chosen to maximize the resolution. The Husimi transform
measures the probability to find a momentump at positionq in coarse-grained phase space.
As shown by the inequality%(s)(p, q) 6 1, the density cannot be concentrated in areas
< h = 2πh̄. In addition, the Husimi density (1) is clearly non-negative, in contrast to the
Wigner distribution, which typically has negative values. The zeros of the Husimi function
are simply the least probable points in phase space and appear at those points, where the
positive and negative contributions of the Wigner function are equal, because the Husimi
distribution (1) can be written as a Gaussian smoothed Wigner density.
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The essential importance of the zeros, however, is based on the analytic properties in
the complexz = (sq + ip)/

√
2sh̄ plane. The Bargmann transform [13] is

〈z|ψ〉 = exp(− 1
2|z|2)F (z∗) (3)

with |z〉 = |p, q; (s)〉, whereF(z) is an entire function of order6 2, and the Weierstrass–
Hadamard factorization

F(z) = zm eC0+C1z+C2z
2
∏
n

(
1− z

zn

)
exp

[
z

zn
+ 1

2

(
z

zn

)2 ]
(4)

expressesF(z) in terms of the zerosz1, z2, . . . and am-fold zero at the origin, i.e. the Husimi
density|〈z|ψ〉|2 is completely determined by its zeros and the coefficientsC0, C1,C2. The
‘geometry’ of the quantum state can be essentially described by the distribution of the zeros,
the so-called ‘stellar representation’ [8, 12].

Let us point out a few basic features of the Husimi zeros:
(i) The zeros are real or appear as complex conjugate pairs.
(ii) The position of the zeros is clearly affected by the squeezing parameters. From

the integral (2), we see that in the limit of large values ofs the Husimi zeros approach the
zeros of the wavefunction in coordinate space and for smalls the zeros of the momentum
distribution.

(iii) There is an upper limit of the density of zeros. In agreement with the uncertainty
relation, there can be only one zero in an areah = 2πh̄ [9] on the average.

(iv) It has been observed that the distribution of zeros differs for classically regular or
chaotic systems and can be considered as a quantum indicator of classical chaos [4]. In
the regular case, the zeros appear to be distributed along curves with distance O(h̄). In
the chaotic case, they fill the space between the large value regions like a gas with mean
distance O(

√
h̄).

(v) There are states without zeros, for example, the Husimi distribution of the coherent
states (2) is a Gaussian density in phase space

%(s)(p, q) =
∣∣∣∣ ∫ φ(s)∗p,q (q

′)φ(s)p0,q0
(q ′) dq ′

∣∣∣∣2 = h̄−1 exp

(−(q − q0)
2

2(1q)2
− (p − p0)

2

2(1p)2

)
. (5)

In addition to these well known features, there are various more or less explicit
statements in discussions or even in the literature, which are simply based on folklore.
It is the aim of the following to correct this misleading view. Let us point out the most
frequent conjectures (to exclude complications, which are important, but not essential for
the present discussion, we confine ourselves to the simple case of bound states of a particle
with unit mass in a one-dimensional potentialH(p, q) = − 1

2{p2+ V (q)}).
(a) The number of nodes of the wavefunction is equal to the number of zeros, i.e. the

quantum state numbern has exactlyn Husimi zeros.
(b) The zeros are restricted to the classically allowed region inside the energy contour

H(p, q) = E.
(c) In the case of a harmonic oscillator, all zeros accumulate at the origin(p, q) = (0, 0).
All these frequent statements are wrong and can be traced back to a straightforward

generalization of results for a simplified harmonic oscillator. In the following we will—
after revisiting the harmonic case—try to clarify the properties of the Husimi zeros by
means of a few instructive numerical illustrations for an anharmonic potential, the Morse
oscillator.

Let us start with the case of a harmonic oscillator with frequencyω = 1,

V (q) = 1
2q

2 (6)
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where the coherent states agree with the minimum uncertainty wavepackets (2) in the
coordinate representation for a squeezing parameters = 1. For the standard choice, where
the analysing wavepacket (2) is taken as a harmonic oscillator coherent state forω = 1, i.e.
s = 1, the Husimi density of an oscillator eigenstaten is given by

%(1)(p, q) = e−(1/2h̄)(p
2+q2) 1

n!

(
1

2h̄
(p2+ q2)

)n
. (7)

The distribution is a radially symmetric function of the action variableI = 1
2(p

2 + q2), a
gamma distribution e−I/h̄(I/h̄)n/n! with mean value〈I 〉 = h̄n and variance1I = h̄√n. In
the limit h̄→ 0, the distribution concentrates on the classical energy shell, as expected in
general. We note that this distribution possesses ann-fold zero at the origin. Figure 1(c)
shows the distribution for the staten = 3 (h̄ = 1).
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Figure 1. Husimi distributions for a harmonic oscillator eigenstaten = 3 for selected values of
the squeezing parameter (s = 10, 3, 1 and 0.1) illustrating the transition from ‘coordinate-like’
to ‘momentum-like’ distributions.

Let us now look at the behaviour of the zeros when the squeezing parameters of the
analysing state is varied (note that for a general potential different from the harmonic
oscillator, there is no ‘true’ or intrinsic value that could be chosen for the squeezing
parameters). Here, the Husimi distribution is a bit more complicated [14]:

%(s)n (p, q) =
√
s

(s + 1)2n−1n!

∣∣∣∣ s − 1

s + 1

∣∣∣∣n exp

(
−p

2+ sq2

h̄(s + 1)

) ∣∣∣∣Hn ( sq + ip√
h̄(s − 1)(s + 1)

)∣∣∣∣2 (8)
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which agrees fors → 1 with (7). For large values ofs, we observe a ‘coordinate-like’
distribution, which transforms for smalls into a ‘momentum-like’ behaviour [15]. The zeros
of the Husimi distribution are confined to the realq-axis for s > 1 and to the imaginary
p-axis for s < 1 (all zeros of the Hermite polynomials in (8) are real valued). Forn = 3,
there are three zeros, a zero at the origin and a symmetric pair. Whens is decreased from
infinity, the zeros move along the realq-axis towards the origin, where they coincide for
s = 1 and separate again along the imaginary axis, until they finally reach their position
on the imaginary (momentum) axis fors → 0. In all cases, the zeros are inside the circle
(p2 + q2)/2 = En = h̄(n + 1/2), i.e. inside the classical energy shell. A very similar
behaviour is found if the frequencyω is different from unity, with the only difference of a
scaling of the axes. Then zeros now appear inside an ellipse, the classical energy shell, and
the most classical-like behaviour of the Husimi density is found for a squeezing parameter
s = ω.

These results for the harmonic oscillator should, however, not be generalized too easily
to non-harmonic potentials. As an example, we will discuss the Morse oscillator

V (q) = D(1− e−aq)2. (9)

Choosinga = (2D)−1/2, the potential approaches (6) for smallq. The normalized Morse
wavefunctions are given by [16, problem 70]

ψn(q) = An e−ζ/2ζ σn1F1(−n; 2σn + 1; ζ ) (10)

with ζ = 4D e−aq , σn = 2D−n−1/2,An = (2σn+1)n{2aσn/n!0(4D−n)}1/2 and1F1 is the
confluent hypergeometric function (for a recurrence relation see [17]). The Morse–Husimi
distributions have been computed by evaluating the integral (1) numerically.

In order to demonstrate the effects of anharmonicity, we consider the caseD = 2, where
the potential has [2D+1/2] = 4 bound states with energiesEn = (n+1/2)−(n+1/2)2/4D,
n = 0, . . . ,3.

Figure 2 shows the Husimi distributions (for an analysis of the Wigner density see [17])
as a contour diagram of% and of the phase function arg(〈z|ψ〉). The squeezing parameter
is chosen ass = 1. As expected from the harmonic oscillator, the density plots for the
eigenstatesn shown strong zeros, which are, however, no longer coincident at the origin
because of the anharmonicity of the potential. The zeros are more pronounced in the phase
diagrams also shown in figure 2, where they appear as topological defects, i.e. as phase
jumps along a loop encircling a zero. One observes that there may be more thann zeros of
a Husimi distribution for staten. In general—for the case of a non-compact phase space,
which is considered here—there is an infinite number of zeros, most of which are, however,
far away in the complex plane, i.e. in regions where the density is extremely small. In
these regions, where the Husimi density is, for example, of the order of% ∼ 10−10, the
numerical results are very sensitive with respect to computational accuracy. As a clear
demonstration of the existence of these weak zeros even for the ground state, figure 3
shows a contour diagram of the phases of the Husimi function (3) for the ground state of a
strongly anharmonic Morse oscillator (D = 1/2, s = 1).

In the following, we will show that also the conjecture (b) is wrong. For large values of
the squeezing parameters, the zeros of the Husimi distribution for an eigenstaten are close
to the nodes of the wavefunction in the coordinate representation, which are located inside
the classically allowed regionV (q) 6 En (for a simple proof see, e.g. [19, Ch 5.5]). The
zeros are real and simple and, therefore, they cannot leave the real axis when the squeezing
parameters is decreased (the complex zeros appear as complex conjugate pairs). So the
only possibility is that the zeros move toward each other, collide and separate as a complex
conjugate pair.
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Figure 2. Husimi distributions for a Morse oscillator with four bound statesEn, n = 0, . . . ,3 as
a contour diagram of% (left) and of the lines of constant phase (right) for a squeezing parameter
s = 1.

For the case of a Morse potential, this behaviour can be studied analytically, at least
approximately. In order to evaluate the Husimi integral in (1) approximately, we observe
that the Morse ground state is close to a harmonic oscillator state for large values ofD, i.e.

ψ0(q) = A0 e−ζ/2ζ σ0 ≈ 1
4
√
π

e−q
2/2. (11)

Using (11), we can approximate the Gaussian e−q2 ≈ √πA2
0 e−ζ ζ 2σ0 and the Husimi density

is

%(s)(p, q)≈
∣∣∣∣Ana ( 4
√
πA0)

s e−sq
2/2(4D)(sq−ip)/a

∫ ∞
0

dζ e−(s+1)ζ/2ζ b1F1(−n; 2σn + 1; ζ )
∣∣∣∣2(12)
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Figure 3. Phases of the Husimi distribution for the ground state of a strongly anharmonic Morse
oscillator (D = 1/2) demonstrating the existence of zeros.

with b = sσ0+σn−(sq− ip)/a−1, i.e. a Laplace transform of1F1, which can be evaluated
in closed form [20, (3.2.16)]:

%(p, q) ≈
∣∣∣∣Ana ( 4
√
πA0)

se−sq
2/2

×
(

1

2
(s + 1))−sσ0+σn((s + 1)2D)(sq−ip)/a0(b)2F1(−n, b; 2σn + 1; 2

s + 1

) ∣∣∣∣2.
(13)

The zeros of (13) are given by the zeros of the hypergeometric function

2F1

(
−n, b; 2σn + 1; 2

s + 1

)
=

n∑
j=0

(−n)j (b)j
(2σn + 1)j j !

(
2

s + 1

)j
(14)

which is a polynomial ofnth degree in(sq − ip). For the staten = 2, in particular, the
zeros are given by

1

a
(sq − ip) = 1

2
(3s − 1)±

√(
D − 3

4

)
s2−D + 1. (15)

Figure 4 shows the motion of the zeros of staten = 2 (D = 8, a = 1/
√

2D = 1/4) at

sq − ip = 1
8(3s − 1)± 1

4

√
29s2− 28 (16)

when the squeezing parameters is varied. For small values ofs, the zeros are outside of
the classical energy shellH(p, q) = E2. The zeros are real fors 6 s∗ = 2

√
7/29≈ 0.98.

For s < s∗ there are two complex conjugate zeros, following the curve

p2 = 7/16− 29/(32− 4q) (17)

which approach the limitp−∞ = ± 1
4

√
7 ≈ ±0.66 for q → −∞, respectivelys → 0. As

shown in figure 4, the numerically determined zeros (circles) are in satisfactory agreement
with these results (broken curve). For large squeezing,s < 0.05, the zeros are outside the
classical energy shell. This ‘disappearance’ of the zeros could have been anticipated from
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Figure 4. Zeros of the staten = 2 for a Morse potential (D = 8) as a function of the
squeezing parameters. For small values ofs, the zeros are outside of the classical energy shell
H(p, q) = E2.

the non-existence of zeros in the momentum space wavefunction for the Morse oscillator
[17, 21].

Furthermore, it should be stressed that in the approximate treatment above we found
again exactlyn zeros for staten, i.e. we missed the weak zeros far out in the complex
plane. This is a consequence of the approximation (11), where special adapted ‘Morse-
like’ minimum uncertainty wavepackets have been used representing a displaced and scaled
Morse oscillator ground state (see [22] for a theory of generalized coherent states).

Let us now consider a two-dimensional case

H(p, q) = 1

2m
(p2

x + p2
y)+ V (qx, qy). (18)

Here one can construct a quantum analogue of the classical Poincaré surface of section by
looking at the Husimi distribution%(p, q) of a quantum (eigen)state (which is a density in
four-dimensional phase space) on a two-dimensional section. Typically, one considers the
equivalent of a classical Poincaré section, the density for, for example,

qy = 0 and py = p(E)y = +
√

2m{E − V (qx, 0)} − p2
x (19)

where the energyE is in most cases taken as the energyEn of the eigenstateψn (see,
e.g., [23, 11]). In this case, the Husimi density can reveal a quantum correspondence to the
typically mixed regular and chaotic classical dynamics. In full phase space, the zeros of
the Husimi function (a squared modulus of a analytic complex function) has nodal surfaces,
which intersect the surface of section (19) in points, similar to the one-dimensional case.
There are, however, important differences. First, as pointed out by Arrantzet al [11], the
Husimi function is not a squared modulus of an analytic function on a complex(px, qx)-
plane. Secondly, in the one-dimensional case, the Husimi densities decay exponentially
outside the classical energy shellH(px, p(E)y , qx, 0) = En. In the case of a surface of
section (19), the region outside the energy shell is inaccessible in classical and quantum
mechanics, because there is no solution of (19) in this region, i.e. no intersection of the
energy shellH(p, q) = En with the (px, qx)-plane. As a trivial consequence, all Husimi
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zeros on the surface of the section are located inside the energy shell. Moreover, their
number is finite because of their limited density. The weak zeros are no longer detectable
in such a plot. It should be pointed out, however, that the zeros move with the energyE

and if a surface of section (19) is constructed for large values of the energyE the weak
zeros will be found again. As a last remark, we note that clearly the number of zeros
inside the energy shell will in general not be equal to the number of the quantum state. For
systems where such an agreement has been observed (see, e.g., [11]), we conjecture that
the number of zeros will decrease for a reduced squeezing parameters. However, such a
squeezing factor may be very small, so that the number and arrangement of the zeros still
carry important information about the nature and even the ordering of the quantum states
as reported in recent articles [3, 11, 12].

In conclusion, we have demonstrated for the case of a Morse oscillator that the behaviour
of the zeros of the Husimi function differs in some important features from common folklore.
We hope that this will help to establish a more adequate view, in particular because of the
importance of the Husimi zeros in contemporary research in the field of quantum chaos.
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